A Direct Discontinuous Galerkin Method for Time Fractional Diffusion Equations with Fractional Dynam

發(fā)布者:文明辦發(fā)布時間:2024-10-30瀏覽次數(shù):10

主講人:趙景軍 哈爾濱工業(yè)大學(xué)教授


時間:2024年11月4日15:30


地點(diǎn):三號樓301室


舉辦單位:數(shù)理學(xué)院


主講人介紹:趙景軍,哈爾濱工業(yè)大學(xué)數(shù)學(xué)學(xué)院教授、博士生導(dǎo)師。哈爾濱工程大學(xué)兼職教授、博士生導(dǎo)師。曾訪問劍橋大學(xué)、阿爾伯塔大學(xué)、香港大學(xué)、中科院數(shù)學(xué)與系統(tǒng)科學(xué)研究院?,F(xiàn)任黑龍江省工業(yè)與應(yīng)用數(shù)學(xué)學(xué)會常務(wù)理事。主要從事微分方程數(shù)值解的研究。在SIAM J. Numer. Anal.和J. Sci. Comput.等期刊發(fā)表SCI論文80余篇,主持和參加國家自然科學(xué)基金、國防預(yù)研基金多項(xiàng)。先后獲中國高校自然科學(xué)二等獎、黑龍江省科學(xué)技術(shù)二等獎。


內(nèi)容介紹:This report deals with the numerical approximation for the time fractional diffusion problem with fractional dynamic boundary conditions. The well-posedness for the weak solutions is studied. A direct discontinuous Galerkin approach is used in spatial direction under the uniform meshes, together with a second-order Alikhanov scheme is utilized in temporal direction on the graded mesh, and then the fully discrete scheme is constructed. Furthermore, the stability and the error estimate for the full scheme are analyzed in detail.