Some results on the nonlinear logarithmic Schrodinger equations

發(fā)布者:文明辦發(fā)布時間:2024-10-22瀏覽次數(shù):10

主講人:姬超 華東理工大學(xué)教授


時間:2024年10月31日10:30


地點:數(shù)理學(xué)院三號樓332室


舉辦單位:數(shù)理學(xué)院


主講人介紹:姬超,華東理工大學(xué)教授,博士生導(dǎo)師,上海市工業(yè)與應(yīng)用數(shù)學(xué)學(xué)會理事。他的研究方向是非線性偏微分方程,變分和拓?fù)浞椒ǎ诎?Sci. China Math., Israel J. Math., J. Anal. Math.,IMRN, CVPDE, JLMS., JDE, JGA,DCDS等SCI刊物上發(fā)表論文近60篇。現(xiàn)主持國家自然科學(xué)基金面上項目一項,現(xiàn)為《Math. Methods Appl. Sci.》和《Discrete Contin. Dyn. Syst. Ser. S》等多個國際刊物編委。


內(nèi)容介紹:In this talk, we are concerned with the nonlinear logarithmic Schrodinger equations. First, we present some results on the existence, multiplicity, and concentration for a logarithmic Schrodinger equation. Next, we explore the existence of multiple normalized solutions to the logarithmic Schrodinger equation via the minimization techniques and the Lusternik-Schnirelmann category. Finally, we introduce the existence and multiplicity of solutions for the logarithmic Schrodinger equation with a potential on lattice graphs, and provide some differences between graph problems and continuous problems. This talk is based on some work with Claudianor O. Alves and Zhentao He.