On a Pieri-like rule for the Petrie symmetric functions

發(fā)布者:文明辦發(fā)布時(shí)間:2024-06-19瀏覽次數(shù):83


主講人:靳宇 廈門(mén)大學(xué)教授


時(shí)間:2024年6月25日15:30


地點(diǎn):三號(hào)樓332室


舉辦單位:數(shù)理學(xué)院


主講人介紹:靳宇,廈門(mén)大學(xué)數(shù)學(xué)科學(xué)學(xué)院教授,博士生導(dǎo)師。主要研究方向是組合數(shù)學(xué)。2010年南開(kāi)大學(xué)組合數(shù)學(xué)中心博士畢業(yè),之后在德國(guó)Kaiserslautern大學(xué),奧地利維也納科技大學(xué)和維也納大學(xué)做博士后研究。德國(guó)洪堡學(xué)者,曾主持過(guò)德國(guó)國(guó)家基金委DFG的個(gè)人項(xiàng)目和奧地利國(guó)家基金委FWF的Elise Richter項(xiàng)目,2021年回國(guó),入職廈門(mén)大學(xué)?,F(xiàn)主持國(guó)家自然基金委青年項(xiàng)目。


內(nèi)容介紹:A k-ribbon tiling is a decomposition of a connected skew diagram into disjoint ribbons of size k. In this talk, I will describe a new connection between a subset of k-ribbon tilings and Petrie symmetric functions, thus providing a combinatorial interpretation for the coefficients in a Pieri-like rule for the Petrie symmetric functions due to Grinberg (2022). This also extends a result by Cheng et al. (2023). As a bonus, our findings can be effectively utilized to derive certain specializations. This talk is based on the joint work with Naihuan Jing and Ning Liu.