Longtime behavior for solutions to a temporally discrete diffusion equation with a free boundary

發(fā)布者:文明辦發(fā)布時間:2024-05-08瀏覽次數(shù):68

主講人:郭志明 廣州大學(xué)教授


時間:2024年5月10日10:00


地點(diǎn):騰訊會議 954 594 836


舉辦單位:數(shù)理學(xué)院


主講人介紹:郭志明,廣州大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院二級教授、博士生導(dǎo)師。2001年博士畢業(yè)于中山大學(xué),2009年在加拿大西安大略大學(xué)訪問一年。多年來一直從事離散系統(tǒng)、泛函微分方程及生物數(shù)學(xué)模型的理論與應(yīng)用研究,在JDE、J. London Math. Soc.、JDDE、JMB、《中國科學(xué)》等國際國內(nèi)重要刊物上發(fā)表論文80多篇,其中SCI收錄60多篇。先后主持國家自然科學(xué)基金面上項(xiàng)目4項(xiàng)、參加國家自然科學(xué)基金重點(diǎn)項(xiàng)目1項(xiàng)。獲得2021年度廣東省自然科學(xué)獎一等獎。


內(nèi)容介紹:In this talk, we will investigate the longtime behavior of solutions to a temporally discrete diffusion equation with a fixed boundary and a free boundary respectively in one space dimension. Such equation can be equivalent in any case to an integro-difference equation, another important time discrete equation that provides powerful tools for the study of dispersal phenomena. We first discuss the global dynamics of the equation in a fixed bounded domain. With a Stefan type free boundary, we then give a new well-posedness proof and the regular spreading-vanishing dichotomy for the corresponding problem. Moreover, a modified comparison principle for the time discrete free boundary problem is proved in an effort to provide the sufficient conditions for dichotomy. It is the first attempt to study the temporally discrete diffusive phenomenon with a free boundary.