Intersection groups of matroids and the Dowling-Wilson conjecture

發(fā)布者:文明辦發(fā)布時(shí)間:2024-04-26瀏覽次數(shù):145

主講人:王博潼 威斯康星麥迪遜分校副教授


時(shí)間:2024年5月6日13:30


地點(diǎn):三號(hào)樓332室


舉辦單位:數(shù)理學(xué)院


主講人介紹:2002年獲國(guó)際數(shù)學(xué)奧林匹克金牌(滿(mǎn)分),2006年獲北京大學(xué)學(xué)士,2012年獲普渡大學(xué)博士,2019年獲美國(guó)斯隆獎(jiǎng)。研究興趣主要是代數(shù)簇的拓?fù)鋵W(xué),以及將其應(yīng)用于組合數(shù)學(xué)、代數(shù)統(tǒng)計(jì)等方面。他的代表性工作是與菲爾茲獎(jiǎng)得主June Huh教授合作,于2017年證明了組合數(shù)學(xué)中著名的Dowling-Wilson猜想。他在Acta Math., CPAM, Memory of AMS, JEMS, Ann. Sci. Ecole Norm. Sup., JDG, Crell, Adv. math., Geom. Topo., Compos. math., IMRN等著名期刊發(fā)表40余篇論文。


內(nèi)容介紹:A few long-standing conjectures in combinatorial geometry have been resolved recently using ideas from algebraic geometry. In this talk, I will give an overview of one of these results, the proof of the Dowling-Wilson conjecture on the Whitney numbers of the second kind. Some key ingredients are the intersection cohomology group of the matroid Schubert variety and its hard Lefschetz theorem. If time permits, I will also discuss some interesting phenomenons when the coeffieient field is of positive characteristics.