The Isometric Immersion of Surfaces with Finite Total Curvature

發(fā)布者:文明辦發(fā)布時間:2024-04-10瀏覽次數(shù):115

主講人:韓青 美國圣母大學(xué)數(shù)學(xué)系終身教授


時間:2024年4月11日16:00


地點(diǎn):三號樓332室


舉辦單位:數(shù)理學(xué)院


主講人介紹:韓青,美國圣母大學(xué)數(shù)學(xué)系終身教授。美國紐約大學(xué)庫朗數(shù)學(xué)研究所博士,美國芝加哥大學(xué)博士后。獲美國Sloan Research Fellowship. 韓青教授長期致力于非線性偏微分方程和幾何分析的研究,在等距嵌入、Monge-Ampere方程、調(diào)和函數(shù)的零點(diǎn)集和奇異集、退化方程等方面做出了一系列原創(chuàng)性的重要研究成果。


內(nèi)容介紹:In this talk, we discuss the smooth isometric immersion of a complete simply connected surface with a negative Gauss curvature in the three-dimensional Euclidean space. For a surface with a finite total Gauss curvature and appropriate oscillations of the Gauss curvature, we prove the global existence of a smooth solution to the Gauss-Codazzi system and thus establish a global smooth isometric immersion of the surface into the three-dimensional Euclidean space. Based on a crucial observation that some linear combinations of the Riemann invariants decay faster than others, we reformulate the Gauss-Codazzi system as a symmetric hyperbolic system with a partial damping. Such a damping effect and an energy approach permit us to derive global decay estimates and meanwhile control the non-integrable coefficients of nonlinear terms.