The rigidity of steady solutions of Navier-Stokes system and its applications

發(fā)布者:文明辦發(fā)布時(shí)間:2024-04-07瀏覽次數(shù):87


主講人:謝春景 上海交通大學(xué)教授


時(shí)間:2024年4月9日9:30


地點(diǎn):三號(hào)樓332室


舉辦單位:數(shù)理學(xué)院


主講人介紹:謝春景,上海交通大學(xué)數(shù)學(xué)科學(xué)學(xué)院教授、博士生導(dǎo)師,國(guó)家優(yōu)秀青年基金獲得者。謝春景教授主要從事流體力學(xué)和相對(duì)論中的偏微分方程的理論研究,在相關(guān)課題上取得了重要研究成果,目前已在 Comm. Math. Phys.、Arch. Ration. Mech. Anal.、Adv. Math.、J. Math. Pures Appl.、Indiana Univ. Math. J.等國(guó)際重要學(xué)術(shù)期刊上發(fā)表論文多篇。


內(nèi)容介紹:The Liouville type theorem for stationary Navier-Stokes system in the whole space is longstanding open problem. In this talk, we first discuss the rigidity of steady Navier-Stokes system with scaling invariant bounds and dimension bigger than three, where we do not need any type of self-similarity or smallness of solutions. Furthermore, this rigidity result is used to study the regularity and far field behavior of steady solutions of high dimensional Navier-Stokes system.