Reduced Order Method for the Parameter Recovery of the Allen-Cahn Equation

發(fā)布者:文明辦發(fā)布時(shí)間:2023-12-06瀏覽次數(shù):356


主講人:許傳炬 廈門大學(xué)特聘教授


時(shí)間:2023年12月13日15:30


地點(diǎn):三號(hào)樓332室


舉辦單位:數(shù)理學(xué)院


主講人介紹:許傳炬,廈門大學(xué)數(shù)學(xué)科學(xué)學(xué)院閩江學(xué)者,特聘教授,博士生導(dǎo)師。1986年廈門大學(xué)本科,1989年巴黎南大學(xué)碩士,1993年巴黎第六大學(xué)博士。主要研究領(lǐng)域有譜元法、計(jì)算流體、相場(chǎng)模型及其算法、分?jǐn)?shù)階偏微分/積分方程理論和數(shù)值計(jì)算。擔(dān)任 Mathematica Numerica Sinica、Communications on Applied Mathematics and Computation 、SIAM Journal on Scientific Computing 等多個(gè)專業(yè)期刊的編委。


內(nèi)容介紹:In this talk, we discuss an efficient parameter recovery reduced-order method for the Allen-Cahn equation. The reduced basis is constructed based on proper orthogonal decomposition and parametrized solution snapshots. Numerical analysis of the proposed method is conducted to derive error estimates for the reduced-order solutions. The impact on the accuracy of time difference quotients as snapshots is also investigated.