主講人:陳化 武漢大學(xué)教授
時(shí)間:2023年11月3日16:30
地點(diǎn):三號(hào)樓332室
舉辦單位:數(shù)理學(xué)院
主講人介紹:陳化,武漢大學(xué)數(shù)學(xué)與統(tǒng)計(jì)學(xué)院二級(jí)教授。研究方向?yàn)槠⒎址匠痰奈⒕植糠治隼碚?,在退化型偏微分方程、退化橢圓算子的譜以及生物數(shù)學(xué)模型的研究等方面取得了一系列重要的研究成果。陳化至今已主持國(guó)家自然科學(xué)基金項(xiàng)目26項(xiàng),其中包括國(guó)家杰出青年基金和國(guó)家海外杰出青年合作基金,八五國(guó)家重點(diǎn)項(xiàng)目、九五國(guó)家重點(diǎn)項(xiàng)目、十一五國(guó)家重點(diǎn)項(xiàng)目主要成員,并在近十年來(lái)連續(xù)主持十二五國(guó)家重點(diǎn)項(xiàng)目(2012-2016)、十三五國(guó)家重點(diǎn)項(xiàng)目(2017-2021)、十四五國(guó)家重點(diǎn)項(xiàng)目(2022-2026)以及國(guó)家基金委天元基金交叉平臺(tái)項(xiàng)目(2017),還為國(guó)家重大項(xiàng)目973核心數(shù)學(xué)項(xiàng)目組成員(2001-2006)以及國(guó)家重點(diǎn)研發(fā)計(jì)劃重點(diǎn)專項(xiàng)項(xiàng)目組成員(2022-2027),并獲教育部跨世紀(jì)優(yōu)秀人才基金。2022年陳化所在的武漢大學(xué)偏微分方程研究團(tuán)隊(duì)榮獲國(guó)家基金委創(chuàng)新團(tuán)隊(duì)。陳化至今在國(guó)內(nèi)外一流SCI數(shù)學(xué)雜志上發(fā)表論文120多篇,編輯書籍3本,并參與在1992年和1999年兩次獲教育部科技進(jìn)步二等獎(jiǎng)。2017年陳化主持的項(xiàng)目獲教育部自然科學(xué)獎(jiǎng)一等獎(jiǎng)。陳化曾任武大數(shù)學(xué)與統(tǒng)計(jì)學(xué)院院長(zhǎng)、國(guó)務(wù)院數(shù)學(xué)學(xué)科評(píng)議組第六屆和第七屆成員、教育部科技委第三屆委員會(huì)委員。陳化現(xiàn)為武漢大學(xué)數(shù)學(xué)協(xié)同創(chuàng)新中心主任、湖北省數(shù)學(xué)會(huì)理事長(zhǎng)。
內(nèi)容介紹:Let us consider the multiple solutions (or multiple sign changing soulutions ) for the following semilinear subelliptic Dirichlet problem \[ \left\{ \begin{array}{cc} -\triangle_{X} u=f(x,u)+g(x,u) & \mbox{in}~\Omega, \\[2mm] u=0\hfill & \mbox{on}~\partial\Omega, \end{array} \right. \] where $\triangle_{X}=-\sum_{i=1}^{m}X_{i}^{*}X_{i}$ is the self-adjoint H\{o}rmander operator associated with vector fields $X=(X_{1},X_{2},\ldots,X_{m})$ satisfying the H\{o}rmander condition, $f(x,u)\in C(\overline{\Omega}\times \mathbb{R})$, $g(x,u)$ is a Carath\'{e}odory function on $\Omega\times \mathbb{R}$, and $\Omega$ is an open bounded domain in $\mathbb{R}^n$ with smooth boundary. Combining the perturbation from symmetry method with the approaches involving eigenvalue estimate, Morse index in estimating the min-max values and degenerate Cwikel-Lieb-Rozenblum type inequality, and modified method for invariant sets, we obtain two kinds of existence results for multiple weak solutions to the problem above. Furthermore, we discuss the difference between the eigenvalue estimate approach and the Morse index approach in degenerate situations. Compared with the classical elliptic cases, both approaches here have their own strengths in the degenerate cases. This new phenomenon implies the results in general degenerate cases would be quite different from the situations in classical elliptic cases.