Propagation Dynamics of Reaction and Diffusion Equations in a Time-heterogeneous Shifting Environmen

發(fā)布者:文明辦發(fā)布時間:2023-06-16瀏覽次數(shù):683


主講人:趙曉強 加拿大紐芬蘭紀念大學教授


時間:2023年6月19日10:00


地點:三號樓126室


舉辦單位:數(shù)理學院


主講人介紹:趙曉強,加拿大紐芬蘭紀念大學數(shù)學與統(tǒng)計系教授,該校University Research Professorship榮譽獲得者。趙教授先后于1983年和1986年在西北大學數(shù)學系獲學士和碩士學位,1990年在中國科學院應用數(shù)學研究所獲博士學位。趙教授長期從事動力系統(tǒng)、微分方程和生物數(shù)學相關領域的研究,在單調動力學、一致持久性、行波解和漸近傳播速度、基本再生數(shù)的理論及應用等方面的系列工作受到同行的廣泛關注和引用。迄今為止,他已在“Comm. Pure Appl. Math.、 J. Eur. Math. Soc.、 J. reine angew. Math.、 J. Math. Pures Appl.、Trans. Amer. Math. Soc.、SIAM J. Math. Anal.”等國際知名期刊上發(fā)表論文180余篇,并在Springer出版專著“Dynamical Systems in Population Biology”。


內容介紹:In this talk, I will report our recent research on the propagation dynamics of a large class of nonautonomous reaction-diffusion equations with the time-dependent shifting speed having a uniform mean c. Under the assumption that in two directions of the spatial variable there are two limiting equations with one admitting a spreading speed c* and the other being asymptotic to annihilation, we show that the solutions with compactly supported initial data go to zero eventually when c is less than or equal to -c*, the leftward spreading speed is -c* when c is greater than -c*, and the rightward spreading speed is c and c* when c is in the interval (-c*,c*) and c is greater than or equal to c*, respectively. We also establish the existence, uniqueness and nonexistence of the forced traveling wave in terms of the sign of c-c*.