Bifurcations, Periodic Peakons, Wave Solutions of Camassa-Holm and Degasperi-Procosi Type Equations

發(fā)布者:文明辦發(fā)布時(shí)間:2023-05-26瀏覽次數(shù):459

主講人:李繼彬 華僑大學(xué)教授


時(shí)間:2023年5月27日9:00


地點(diǎn):三號(hào)樓117室


舉辦單位:數(shù)理學(xué)院


主講人介紹:李繼彬,教授,博士生導(dǎo)師,國家級(jí)突出貢獻(xiàn)專家。主要從事動(dòng)力系統(tǒng)與非線性微分方程等領(lǐng)域的研究。曾主持承擔(dān)國家自然科學(xué)基金重點(diǎn)項(xiàng)目和面上項(xiàng)目等10余項(xiàng),發(fā)表論文250多篇,在“科學(xué)出版社”等出版中英文專著10余部,主編教材兩部、出版科普書兩本。三十余年來培養(yǎng)碩士和博士研究生70余人。曾獲國家優(yōu)秀教學(xué)成果二等獎(jiǎng)(排名第一),科研成果曾分別獲云南省和浙江省科學(xué)技術(shù)一等獎(jiǎng)(排名第一)。


內(nèi)容介紹:For the generalized Camassa-Holmand Degasperis-Procosi type equations, by using the techniques from dynamical systems and singular traveling wave theory developed by [Li and Chen,2007] to analyze its corresponding traveling wave system depending on four parameters,it was found that under different parameter conditions, its bifurcation portraits exhibit all possible exact explicit bounded solutions (solitary wave solutions, periodic wave solutions, peakon as well as periodic peakons). A total of 30 explicit exact parametric representations of the traveling wave system of the CH-DP type equation are presented.

熱點(diǎn)新聞
最新要聞