Rogers-Ramanujan type identities and Nahm sums

發(fā)布者:文明辦發(fā)布時間:2024-07-02瀏覽次數(shù):78

主講人:王六權 武漢大學教授


時間:2024年7月2日15:30


地點:三號樓301室


舉辦單位:數(shù)理學院


主講人介紹:王六權,2014年本科畢業(yè)于浙江大學,2017年博士畢業(yè)于新加坡國立大學,現(xiàn)為武漢大學教授。主要從事數(shù)論與組合數(shù)學領域的研究,研究課題多集中在q-級數(shù)、整數(shù)分拆、特殊函數(shù)、模形式理論等方面。迄今在《Advances in Mathematics》,《Transactions of the American Mathematical Society》、《Advances in Applied Mathematics》、《Journal of Number Theory》、《Ramanujan Journal》等期刊上發(fā)表學術論文40多篇,先后主持國家自然科學基金青年基金和面上項目各一項。


內(nèi)容介紹:Let $r\geq 1$ be a positive integer, $A$ a real positive definite symmetric $r\times r$ matrix, $B$ a vector of length $r$, and $C$ a scalar. Nahm's problem is to describe all such $A,B$ and $C$ with rational entries for which $$F_{A,B,C}(q)=\sum_{n=(n_1,\dots,n_r)\in (\mathbb{Z}_{r\geq 0})^r} \frac{q^{\frac{1}{2}n^\mathrm{T} An+n^\mathrm{T} B+C}}{(q)_{n_1}\cdots (q)_{n_r}}$$ is a modular form. Zagier completely solved the rank one case. When the rank $r=2,3$, Zagier presented many examples of $(A,B,C)$ for which $F_{A,B,C}(q)$ appears to be a modular form. We present a number of Rogers-Ramanujan type identities involving double and triple sums, which give modular form representations for Zagier’s rank two and rank three examples. We will also discuss the modularity of some other generalized Nahm sums.

熱點新聞
最新要聞