A theory of counting surfaces in projective varieties

發(fā)布者:文明辦發(fā)布時間:2024-06-07瀏覽次數(shù):158

主講人:蔣云峰 美國堪薩斯大學(xué)教授


時間:2024年6月14日10:30


地點(diǎn):三號樓332室


舉辦單位:數(shù)理學(xué)院


主講人介紹:蔣云峰,堪薩斯大學(xué)教授,研究方向?yàn)榇鷶?shù)幾何和數(shù)學(xué)物理,特別是Gromov-Witten理論和Donaldson-Thomas理論,以及與雙有理幾何,辛拓?fù)?,幾何表示論,枚舉組合,S-對偶猜想和鏡面對稱間的聯(lián)系??蒲谐晒S碩,在Adv. Math., JDG, JAG, IMRN, Math. Ann. 等著名數(shù)學(xué)雜志發(fā)表論文多篇,是國際著名的代數(shù)幾何專家。


內(nèi)容介紹:The theory of enumerative invariants of counting curves (Riemann surfaces) in projective varieties has been an important theory in the last decades. The enumerative invariants were motivated by theretical physics---string theory and gauge theory, and include Gromov-Witten theory, Donaldson-Thomas theory and more recently Vafa-Witten theory. It is hoped that there may exist a theory of counting algebraic surfaces in projective varieties. A theory of counting surface in a Calabi-Yau 4-fold has been constructed using Donaldson-Thomas theory of 4-folds. In this talk I will try to give evidences of a counting surface theory using stable maps, and explain why it is difficult to construct the counting surface invaraints.

熱點(diǎn)新聞
最新要聞